Betti Numbers of Graded Modules and the Multiplicity Conjecture in the Non-cohen-macaulay Case

نویسندگان

  • MATS BOIJ
  • JONAS SÖDERBERG
چکیده

Abstract. We use the results by Eisenbud and Schreyer [3] to prove that any Betti diagram of a graded module over a standard graded polynomial ring is a positive linear combination Betti diagrams of modules with a pure resolution. This implies the Multiplicity Conjecture of Herzog, Huneke and Srinivasan [5] for modules that are not necessarily Cohen-Macaulay. We give a combinatorial proof of the convexity of the simplicial fan spanned by the pure diagrams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graded Betti Numbers of Cohen-macaulay Modules and the Multiplicity Conjecture

We give conjectures on the possible graded Betti numbers of Cohen-Macaulay modules up to multiplication by positive rational numbers. The idea is that the Betti diagrams should be non-negative linear combinations of pure diagrams. The conjectures are verified in the cases where the structure of resolutions are known, i.e., for modules of codimension two, for Gorenstein algebras of codimension t...

متن کامل

An Improved Multiplicity Conjecture for Codimension Three Gorenstein Algebras

The Multiplicity Conjecture is a deep problem relating the multiplicity (or degree) of a Cohen-Macaulay standard graded algebra with certain extremal graded Betti numbers in its minimal free resolution. In the case of level algebras of codimension three, Zanello has proposed a stronger conjecture. We prove this conjecture for the case of codimension three graded Gorenstein algebras.

متن کامل

Betti Numbers and Shifts in Minimal Graded Free Resolutions

Let S = K[x1, . . . ,xn] be a polynomial ring and R = S/I where I ⊂ S is a graded ideal. The Multiplicity Conjecture of Herzog, Huneke, and Srinivasan states that the multiplicity of R is bounded above by a function of the maximal shifts in the minimal graded free resolution of R over S as well as bounded below by a function of the minimal shifts if R is Cohen–Macaulay. In this paper we study t...

متن کامل

Betti Numbers of Graded Modules and Cohomology of Vector Bundles

In a remarkable paper Mats Boij and Jonas Söderberg [2006] conjectured that the Betti table of a Cohen-Macaulay module over a polynomial ring is a positive linear combination of Betti tables of modules with pure resolutions. We prove a strengthened form of their Conjectures. Applications include a proof of the Multiplicity Conjecture of Huneke and Srinivasan and a proof of the convexity of a fa...

متن کامل

Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module

Let  be a local Cohen-Macaulay ring with infinite residue field,  an Cohen - Macaulay module and  an ideal of  Consider  and , respectively, the Rees Algebra and associated graded ring of , and denote by  the analytic spread of  Burch’s inequality says that  and equality holds if  is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of  as  In this paper we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008